
Scalable Systems and Development Processes
View PDF

Instructor(s):

Joseph Janos

Short Description of the Course:
A key engineering and entrepreneurial challenge is not only to quickly deploy the initial version of a great
product but also, upon successful adaption by the market, to scale it up.

A product  or product family can be scaled both “horizontally” by adding more feature sets to it and
“vertically” attracting more users, on different platforms and in different markets, such as desktop  and
mobile, stand-alone and cloud, enterprise and consumer, local and international.

How and when to scale a product may be a business decision. The architecture of the code base and the
engineering organization must be prepared for these requirements.

This course teaches both the software architectural and engineering organizational aspects of building large
scale products. It emphasizes the dynamic, evolutionary nature of this process. Continuous innovation,
scaling and adaptability are essential for successful companies. They should be prepared to build upon their
existing products and engineering processes and organization.

The course teaches basic software architectural concepts, technologies and practices to architect products
that can be quickly deployed but as the need arises can be smoothly, incrementally scaled.

Aim of the Course:
The aim of the course is to introduce to students best practices and technologies to build products that can
evolve and scale over time. How to build products that grow from thousands of line of code to millions,
developed and maintained from tens of software engineers to tens of thousands with a user base (supported
load) from tens of thousands to tens of millions.

The course touches upon both engineering processes, such as source control, testing, bug tracking,
monitoring and applicable technologies such as networking, load balancing, parallel computing, large scale
data repositories.

Prerequisites:
The course requires thorough knowledge of big-O notion and analyzing algorithms using it. Knowledge of
basic data structures (e.g. hashmap, lists, tuples) and operations on them (e.g. insert, find, sort) is required. 

Methods of Instruction:
The course comprises a series of lectures, a team homework assignment and a talk presented by students
from online resources.

Detailed Program and Class Schedule:

Part 1: Scalable Systems

Storage Technologies

Non scalable storage. RDBMS, SQL.
Distributed storage systems. NoSQL databases

https://www.ait-budapest.hu/print/view/pdf/syllabus_instructors_views/entity_print_views_print_1?view_args[0]=90


Bigtable, Dynamo, MangoDB

Networking

OSI reference model
DNS
Load balancers

Distributed Computing

Communication, synchronization, failure handling
Leader election, consensus, mutual exclusion
Paxos, Chubby
Mapreduce, Pregel

Cloud

Service Models: IaaS, PaaS, SaaS
Cluster Management
Bigdata
Streaming data processing , lambda

Part 2: Scaling the engineering process

Design

UML
RESTful architecture

Coding

Version Control
Object Oriented Programming
Agile, eXtreme Programming, Test Driven Development
Refactoring

Testing

White, black, grey box testing
Unit testing, mocks and stubs
Bug tracking systems

Integration and Release

Acceptance test
Configuration management
Automated build and integration

Monitoring and Maintenance

Service level agreements
Signals, alerts, post mortem
Distributed trace

Grading:
Instead of a final exam at each class there is a brief (5 minute) mini-quiz about the previous class. The final



grade is based on these mini-quizzes (30%), on participation (20%), on the prepared student talk (20%) and
on the team project (30%).

Instructors' bio:

Joseph Janos received his degree in Mathematics from ELTE, Budapest, in 1973. He started his career in
the Computer and Automation Institute of the Hungarian Academy of Sciences where he was Head of a
CAD/CAM department. He left for the USA in 1981. He worked for the CS Department of SUNY at Stony
Brook and for a number of large companies (Wang Laboratories, Lotus, IBM, Modicon.) In this period in
various roles he architected and led engineering teams to build large scale back-end systems and UI
intensive end-user products. (Lotus Notes and SmartCenter, a desktop electronic publishing system, a
graphical front-end for PLC editing and monitoring.) After 1994 he worked exclusively on Internet-related
technologies. Co-presence server with Ubique (sold to AOL), SurfLogic, his own startup, a client-side
customizable crawler that he sold to Oracle in 1997, relevance matching engine (Lumapath) and a content
delivery system (Radiance.) In 2004 he joined Google, where he was one of the first 25 engineers hired in
New York. He retired in 2015. During his 11 years at Google he helped to grow the NY organization and led
several engineering teams, building both consumer facing products (AdWords, Maps) and large scale
distributed internal services (network monitoring and management, data processing pipelines, data mining.)
As a senior level architect he learned and used most of Google’s vast technical infrastructure and
technologies.


