## Graph theory Final exam 2013.12.11.

1. Define the following notions:

| a) perfect graph.            | (12 points) |
|------------------------------|-------------|
| b) vertex cover.             | (12 points) |
| c) Ramsey number $R(k, l)$ . | (12 points) |
| d) Turán graph $T(n,r)$ .    | (12 points) |
| e) k-connected graph.        | (12 points) |

2. Formulate the following theorems:

| a) Strong perfect graph theorem. | (20 points) |
|----------------------------------|-------------|
| b) Turán's theorem.              | (20 points) |

- 3. State and prove Mantel's theorem. (40 points)
- 4. There are 49 pairwise non-isomorphic graphs that can be obtained from a cycle of length 101 by adding exactly one diagonal to the cycle. How many of these graphs are perfect?

  (40 points)
- 5. Determine the maximum number of edges of a 7 vertex simple graph that does not contain an even cycle. (40 points)
- **6.** Let G be a simple graph on 12 vertices, such that among any three vertices there are (at least) two neighbours. Prove that G contains a matching of size 5.

(40 points)

- 7. Find a simple graph G on 9 vertices, such that  $\omega(G) = 3$  and  $\alpha(G) = 3$  (and prove that for your graph both equations hold.) (40 points)
- 8. Let the vertices of a graph G be the numbers  $1, 2, \ldots, 100$ . There is an edge between different numbers i and j if  $i \mid j$  or  $j \mid i$ . Determine  $\tau(G)$ . (40 extra points)